The Data Flow Graph in the

ASCIS project
Deliverable CD/m30/A1/1

Jens P. Brage,
Jos T.J. van Eijndhoven,
Kevin O’Brien,

Peter Poechmiiller

Febr 25, 1992

Chapter 1

Introduction

The ASCIS consortium has decided to use a common format for the exchange
of designs, on the level of data flow graphs. The obvious advantages of a
- corimon format are possible sharing of each others software, and exchange
of actual design data. Furthermore it allows comparisons to be made between
different synthesis approaches in the project, an important aspect in basic
research.

The exchange format is positioned at the semantical level of data flow
graphs for the following reasons:

e Data flow graphs are a suitable starting point for architectural syn-
thesis, since they still allow maximal freedom in exploiting area/time
tradeoffs, and do not impose real restrictions towards different different
design styles.

e Data flow graphs are in general not considered desirable directly as
 user (designer) interface. Hence other dedicated systems are used for
the designer interface (VHDL, Hardware C, Silage, ...). To start archi-
tectural synthesis, an initial data flow analysis is always required. By
standardising on the result of this analysis, the different input methods
become available for the different synthesis projects.

o Data flow graphs are semantically clean and simple, unlike many de-
signer oriented specifications, thus forming an unambiguous behavioural
definition suitable to interface to synthesis packages as well as formal
verification.

As appendix an overview on the data flow graph’s intended use, semantics,
and syntax is included as preprint of a paper appearing at the European
Design Automation Conference, 16-19 March 1992, Brussels.

The following sections are contributions from the ACIS partners in Eind-
hoven. Darmstadt. Lyngby, and Grenoble, on their efforts towards the DFG.

Chapter 2

The ASCIS DFG

2.1 The creation of the standard

The data flow graph standard as used in the ASCIS project was designed to
combine a set of features, which make it worldwide unique:

The data flow graphs are allowed to contain conditional execution as
well as loop. constructs. The token flow semantics is responsible for

a consise behavioural model. without the need for additional external
control information.

Having conditionals and loops uniformly contained in the data flow
graph allows synthesis programs to perform several global optimisa-

tions, not hindered by block boundaries as are imposed by most other
representations.

A flexible and open approach to data typing is used, allowing numeric
as well as bitwise operations on the same values, and supporting easy
addition of new datatypes.

Dedicated nodes can be used for input and output operations, allow-
ing the specification of sequences of reads and writes on one physical

port, conditional I/0O, or the sharing of one physical port with several
hierarchically structured subgraphs.

The exchange format is a textual file with a braces oriented syntax
as Lisp and EDIF. This makes the format easily extendible for local
or future needs, while maintaining backwards compatibility with older
programs who do not understand these. For a standardisation effort in

a long-term research project. this was considered an important prop-
erty.

8]

The data flow graph itself was subject of research in subtasks A.l and
A.2. in order to make sure that its semantics were general enough to allow
mapping of other behavioural description languages into them, and at the
same time consise and accurate enough to allow formal verification.

The first software handling the textual format was made available to the
other ASCIS partners at a project workshop in Grenoble, November 1990.
Improved and extended releases were distributed in February 1991, July 1991.
and February 1992.

2.2 Recent developments

During the last half year work was done to extend the DFG format to support
intermediate or full synthesis results. Such an extension would greatly en-
hance possible cooperation between the partners, by allowing the comparison
or use of each others algorithms for individual synthesis steps (scheduling,
allocation, binding, network generation).

~ The extension is basically made by adding two new types of graphs, a
control graph (CTG) and a network graph (NWG), next to the existing
dataflow graph.

Whereas the dataflow graph defines the algorithmic behaviour, the control
graph fixes the timing behaviour and hints on the controller design, and the
network graph defines the hardware on which the algorithm executes: the
final synthesis result.

The control graph basically corresponds to the finite state diagram as
normally drawn for controllers. However we extended the semantics to allow
concurrent multiple active states, and hierarchical structuring of such graphs.
The result of scheduling can now be expressed as links between DFG nodes
and CTG nodes.

The network graph describes the final network that results from the ar-
chitectural synthesis. The nodes in the graph correspond to physical modules
to be implemented on the IC. Initially the graph might contain a set of nodes
only (i.e. no edges), indicating the set of hardware modules on which the
algorithm must be executed, the result of module allocation. Later, links
between DFG nodes and NWG nodes indicate which operations are mapped
onto which modules, the result of binding. Equal notions hold for regis-
ter(file)s and busses. Finally the fully interconnected network follows as
result.

" Besides links between nodes, links between graphs are supported. These
express relations as 'this DFG is controlled by this CTG’, or ’this NWG is a
possible implementation of this DFG’.

These graph links allow -together with the hierarchy concepts- the de-
scription of the synthesis library (operations, modules, and their relations)

in the same terms. by adding an 'empty’ DFG for each operation and an
‘empty’ NWG for each module.

. Besides on these basic concepts. work was going on to augment the textual
format. but more even to design a programming interface to manipulate these
sets of graphs, suitable to be used in all tools. Initial documentation of this
programming interface was distributed to the ASCIS partners.

Chapter 3

Work at TH-Darmstadt

~ The work at TH-Darmstadt is strongly related to the DFG-format developed
by the Eindhoven University of Technnology. The internal format usea at
TH-Darmstadt had been developed in parallel to the Eindhoven format but is
very similar in structure and semantics. Two converters are available which
transfer the Darmstadt DCG-format into the Eindhoven format and vice
versa. S0 far no principal transformation problems had been encountered
which could restrict the conversion process and all functional descriptions
representable in the Eindhoven or Darmstadt format are convertable. There-
fore, all high level synthesis tools developed at TH-Darmstadt are accessable
through the Eindhoven graph format.

Synthesis at TH-Darmstadt starts with a description in TH-HardwareC
which is different from Stanford HardwareC. Stanford HardwareC was unac-
ceptable due to some major restrictions which make it impossible to fully ex-
ploit many features absolutely required for the intended application domains.
Major advantages of TH-HardwareC compared with Stanford HardwareC are:

o the availability of more complex variable types esp. fix and: float
e array declarations are permitted for all available variable types

e there are no restrictions in the use of variables (esp. to control blocks
like loops etc.) which are not known at compile time

A TH-HardwareC compiler is available performing a thorough data/control
flow analysis. The result of the compiletion is a textual representation of the
data/control flow format used at Darmstadt.

This format has to be fed into a consecutive optimizer which peforms
some basic optimizations on the data/control flow graph. The first optimiza-
tion step is dead code elimination which is not simply a check if nodes are
somehow connected through edges to the remaining data/control flow graph.
This check exploits semantical knowledge of the format to decide if certain

connections make sense or are rather redundant without influence on data
stream computations.

The optimizer is also responsible for removal of redundancies generated by
the compiler. These redundancies arise due to the fact that during compila-
tion of a certain TH-HardwareC block there is no global information available
on future use of variables generated in this block. Therefore, these variables
are generally made available outside the loop, which requires additional graph
elements despite they are never used in the consecutive TH-HardwareC code.
This optimization can be very important in some special applications as e.g.
the fifth order digital elliptic wave filter where a graph reduction of 50% had
been achieved. Some additional redundancy removals are also performed
through the optimizer.

After optimization the internal graph format can be transformed into
the Eindhoven format. Through this interface TH-HardwareC specification is

available to all ASCIS partners. For tool comparisons the following bench-
marks are provided in TH-HardwareC:

e fifth order digital elliptic wave filter [SB90}(small example for tool
checking and first comparisons)

¢ parallel fifth order digital elliptic wave filter (for scheduler quality com-
parisons)

e state variable filter (real process control application)

e ignition control for combustion engines (very hard real process control
application requiring background memory management)

e correlatorl {simple example taken from Leiserson [Le83] which requires
global pipelining for achieving optimal solutions)

o correlator2 (functionally equivalent to correlatorl but specified with
different TH-HardwareC constructs. This is a benchmark to check for
description sensitivity of the same functional behaviour)

Another tool that can be applied before conversion to the Eindhoven flow
graph format is a first version of a background memory manager. This tool
transforms the data/control flow graph into a functionally equivalent repre-
sentation with less arrays, reduced and reordered memory access operations.
Since this tool only performs transformations on the internal graph format
every ASCIS partner can use it either through the TH-HardwareC interface or
through the Eindhoven graph format.

All structural svnthesis tools which are already finished or currently under
development at TH-Darmstadt (this includes various schedulers and a path
to layout through the CADENCE framework in SOLO 2030 configuration)

can be used by all partners through the Eindhoven interface. However. it is
certainly not possible to exchange structural synthesis results through a DFG
format. At this moment in connection with structural svnthesis the inter-
change format is mainly used at TH-Darmstadt to compare the performance
of locally developed tools with those of other ASCIS partners.

Chapter 4

Proposed Extensions to the
ASCIS DFG for External

Communication

This section proposes a number of extensions to the basic ASCIS DFG rep-
resentation. The extensions are based on the work of the TUL ASCIS group
and are designed to support to following requirements:

¢ The ability to incorporate DFG models into systems consisting of non-

DFG models.
» Pragmatics suited for description of ‘one-shot’ calculation applications.
. ’Expréssion of DFG descriptions in VHDL.
These requirements are achieved through the following facilities:

e The introduction of three nodes with special semantics for interfacing
with the non-DFG world.

e A restriction on the semantics of the outer loop:
o A VHDL subset capable of representing DFGs.

This appendix details these extensions, and suggests a set of rules for
converting between the pure ASCIS DFG and the extended DFG.

4.1 External Communication

In the TUL high-level synthesis work, a design representation consists of
functional units interconnected by level-sensitive asynchronous protocols.

Port Direction Type
ExternalData

Controllnput Input Control token
ExternalData Input Non-DFG signal
ControlOutput Qutput Cantrol token
Data QOutput Data token
Control Control
Input Qutput

Data

Figure 4.1: The Import Node.

One possible representation of a functional unit is a DFG. In order to
facilitate a direct representation of the communication with other functional
units, TUL suggests the addition of three nodes with special semantics: Im-
port. Export and Wait.

The following subsections details the semantics of each of these nodes.
Notice that the Import and Export nodes do not provide any synchroniza-
tion with the external world (unlike the ASCIS DFG get and put nodes).
Further information may be found in [Bra91b].

4.1.1 The Import Node

The Import node (figure 4.1) has one DFG input and two DFG outputs. In
addition, it has one non-DFG input. The behavior of the node is:

When an Import node receives a control token on its control in-
put, it samples the external signal and generates a corresponding

data token on the data output. Also, a control token is output
on the control output.

Several Import nodes may sample the same input signal.
Consequently, the Import node guaranties:

e That the external signal is sampled after the ingoing control token
arrives.

e That the external signal is sampled before the control token is trans-
mitted on the control output.

4.1.2 The Export Node

The Export node (figure 4.2) is the inverse of the Import node. It has two

DFG inputs and a single DFG output. Also, it has one non-DFG output. The
behavior 1s:

Port Direction

Data Countrollnput Input
Data nput
ControlOutput Output
ExternalData Qutput
Control Control
input Output

ExternalData

Figure 4.2: The Export Node.

Type

Control token
Data token
Control token
Non-DFG signal

When a control token is present on the control input and a data
token on the data input. the external signal is updated to reflect

the value’of the data token. The control token is then
the output.

copied to

A given external signal may have several driving Export nodes
(though a well-behaved DFG should never permit more than one
such node to be able to fire at any given time). Also, the signal

is assumed to remember the latest assigned value.
Consequently. the Export node guaranties:

e That the external signal is untouched until the ingoing
present.

o That the external signal has stabilized before the control token is trans-

mitted on the control output.

4.1.3 The Wait Node

This is possibly the most interesting of the new nodes, as it allows svo-
chronization of DFG processing with the external world without emploving

busy-wait schemes. This have a number of advantages:

e The real intent of the construction (i.e.. synchronization) isn’t obscured

by loop structures, etc.

¢ By the abstraction of the actual synchronization mechanism, an imple-
mentation is free to choose whatever method suits the actual low-level

architecture best.

¢ Simulation of the system is considerably easier.

The Wait node (figure 1.3) has a DFG input and a DFG output. In addition.

it has one or more non-DFG inputs. Its behavior is given by:

10

control token is

Port Direction Type
ExternalData

Controllnput Input Control token
ExtermalData, Input Non-DFG
boolean signals

ControlOutput Output Control token
Control Control
Input Qutput

Figure 4.3: The Wait Node.

When a control token is present on the input and any of the

external signals are TRUE, the control token is copied to the
output.

Thus, the temporal behavior is:

o The state of the external signals are ignored until the input control
token has arrived.

¢ The output control token will not be generated until at least one of the
external signals are TRUE.

o The control token may pass straight through the Wait node if anv of
the external signals are TRUE when the input control token arrives.

4.2 The Outer Loop

[VEdJS91], section 2.10, states the overall behavior of the ASCIS DFG: As the
DFG represents a piece of hardware, it is possible to execute the algorithm
several times over. In order to formalize this notion, an implicit, infinite
outer loop is therefore assumed to surround the graph.

[VEdJS91] furthermore defines that the state of the graph after one such
iteration is preserved and used as the initial condition for the following it-
eration. This is different from the TUL model of DFGs which calls for the
re-initialization of the graph for each iteration of the outer loop.

The reason for this difference in the DFG pragmatics is due to differences
in application areas: The TUL work focuses on applications characterized by
‘one-shot’ calculations (i.e., each iteration of the outer loop corresponds to
the execution of a complex algorithm and the hardware is effectively reset
between calculations), e.g., support processors for general purpose CPUs.

Consequently, it is ad\anta.geous to be certain that no state is preserved
between iterations.

11

4.3 VHDL Representation of ‘DFGs

This section suggests the use of an alternative syntax for DFGs allowing the
DFG to be represented in VHDL. The advantage of this is the possibility
of representing (parts of) a design at several different levels within the same
base language. In particular, the TUL ASCIS group has VHDL representations
for procedural models [Bra9la], data flow graphs and register transfer level
descriptions.

The VHDL DFG representation is based on the VHDL structural repre-
sentation and obtains the correct semantics through a specialized use of the

VHDL bus resolution functions [MB90b, MB90a).

4.4 Conversion Between the DFG Formats

The extensions Jisted above present problems in exchanging designs between
the ASCIS DFG and the extended DFG. This section details the problems
and suggests a set of conventions which permits exchange of designs. The
treatment is divided into three parts according to the three sections above.

4.4.1 The Interface Nodes

The addition of the nodes for external communication represents the worst
problem, as the two representations have different models of the external
world. This difference can only be resolved by establishing a set of conven-
tions for representing the communication protocols of one representation in
the protocols of the other.

Converting from the ASCIS DFG representation to the extended represen-
tation is relatively straight-forward:

The,cmmunication of a DFG token can be implemented by adding two
boolean control signals and employing a simple 4-phase handshake protocol.

Converting from the extended representation to the base representation is
more difficult. Conversion will be possible in cases where the communication
can be viewed as a handshake protocol as stated above. It may be possible
to establish further such conventions.

Conversion cannot be achieved in the general case: The behavior of the
Wait node cannot be represented in the ASCIS DFG (the Wait node poten-

tially allows information to be lost — this is not possible using the ASCIS
DFG nodes).

4.4.2 The Outer Loop

Converting from the TUL representation to the basic ASCIS DFG representa-
tion should not present any problems.

Conversion the other way could be achieved simply by always adding an
explicit outer loop. However. for algorithms which does not utilize any global
state, this might lead to inefficient synthesis. - -

Consequently, the addition of an explicit outer loop should be selective,
either by manual control or by automatic analysis of the algorithm. The

latter option will not always be possible but a safe method could be devised
(by adding the loop, in case of doubt).

4.4.3 The VHDL Representation

The alternative representation as a VHDL subset does not really present any

problems: A simple syntactic translator will be able to transform back and
forth between the representations.

4.5 Summary

This chapter has presented a number of extension to the ASCIS DFG repre-
sentation for the purpose of making the representation better suited for the

work of the TUL ASCIS group.

The extension falls into three categories:

1. The addition of three nodes with special semantics for communication
with the external world.

2. A restriction on the behavior of the outer loop.

3. A different syntax for representing the DFGs in a subset of VHDL.

4.6 Modelling Control-Flow Dominated Cir-
cuits With DFGs

In the ASCIS project, INPG has concentrated on the synthesis of control-flow
dominated circuits. Inherent properties of such circuits include hierarchical
control, global transitions and parallel state execution. Such properties ren-
dered it difficult to represent such circuits using early versions of Eindhoven's
DFG and thus it was decided to stay with VHDL as the standard means of
representation. However. subsequent work at TUE overcame the main ob-
stacles and it was proposed to start using this format in ASCIS2.

13

The research in ASCIS has culminated with the development of the AM-
ICAL system, detailed in deliverables TIM3/m30/c3/1-2. Essentially. this
system allows the interactive, manual or automatic allocation of functional
units and connections to operations in a data-path. More recently. a path-
based scheduling tool has been added to AMICAL that allows the direct
generation of control-steps from a behavioural-level VHDL description.

A standard DFG is not an adequate means of representing control-flow
dominated circuits within INPG’s design framework for two reasons:

Inability to represent complex control structures

Incompatibility with AMICAL’s input description

Complex control structures such as those mentioned previously are fun-
damental properties of control-flow dominated machines. These structures
however are verv, difficult to represent using classical DFG approaches.

The AMICAL svstem accepts as input a set of macro-cycles containing
instructions that can be executed in parallel. It is assumed that all register
allocation has been done beforehand. This is in direct contrast to DFG
principles where registers are not considered and operations are carried out
on Values.

During an ASCIS workshop in Lyngby in September 1991, a methodology
was proposed by TUE whereby their DFG would be able to accommodate
control-flow dominated circuits. Rather than a single DFG, it was proposed
to use three inter-acting representations that could specify the data-flow,
the control-flow and the allocated resources. This representation would take
the form of three inter-connected graphs: a data-flow graph similar to the
early versions proposed by TUE, a control graph that would indicate the
scheduled states and the flow of control between these states, and a network
graph showing the resources used. In addition, links between the graphs
would show which operations in the data-flow graph were to be scheduled in
which state of the control graph and were to use which registers (if any) in
the network graph. thereby satisfying all of the constraints imposed by both
control-flow dominated circuits and INPG’s design framework.

This work was proposed in ASCIS1 and was to be developed in ASCIS2.
In the meantime, all designs and examples at INPG were represented in
a subset of VHDL that is compatible with Proc-VHDL developed at TUL.

This has the additional benefit of being able to use the expected link between
Proc-VHDL and the DFG format.

14

Bibliography

[Bra9la]

[Bra91b]

[Le83]

[MB90a]

[MBYOb)]

[SBYO]

[vEdJS91]

Jens P. Brage. ProcVHDL: A VHDL subset for high-level synthesis.
Technical report, Technical University of Denmark, 1991.

Jens P. Brage. The semantics of a set of DFG nodes for high-level

synthesis. Technical report. Technical University of Denmark,
1991.

C. E. Leiserson and et. al. Optimizing synchronous circuitry by
retiming. In Third Caltech Conference on Very Large Scale Inte-
gration. Computer Science Press, 1983.

Jan Madsen and Jens P. Brage. Flow graph representation in
VHDL. Technical report, Technical University of Denmark, 1990.

Jan Madsen and Jens P. Brage. Using VHDL bus resolution func-
tions for data flow graph modelling. In Proceedings of First Eu-

ropean Conference on VHDL Methods, 1990.

L. Stok and R. van den Born. Logic and Architecture Synthesis for
Silicon Compilers, chapter EASY: Multiprocessor Architecture
Optimisation, pages 313-327. North-Holland, 1990.

Jos T.J. van Eijndhoven, G.G. de Jong, and L. Stok. The ascis
data flow graph: Semantics and textual format. Technical Report
91-E-251, Eindhoven Univ. of Tech., Jun 1991.

Appendix A

A Data Flow Graph Exchange
Standard

Jos T.J. Van’ Eijndhoven, Leon Stok

Preprint of a paper appearing in the proceedings of "The European Design
Automation Conference”, Brussels, March 1992

16

